Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst.

نویسندگان

  • Bin Tan
  • Nuno R Candeias
  • Carlos F Barbas
چکیده

Single-step constructions of molecules with multiple quaternary carbon stereocentres are rare. The spirooxindole structural motif is common to a range of bioactive compounds; however, asymmetric synthesis of this motif is complicated due to the presence of multiple chiral centres. The development of organocatalytic cascade reactions has proven to be valuable for the construction of several chiral centres in one step. Here, we describe a newly designed organocatalytic asymmetric domino Michael-aldol reaction between 3-substituted oxindoles and methyleneindolinones that affords complex bispirooxindoles. This reaction was catalysed by a novel multifunctional organocatalyst that contains tertiary and primary amines and thiourea moieties to activate substrates simultaneously, providing extraordinary levels of stereocontrol over four stereocentres, three of which are quaternary carbon stereocentres. This new methodology provides facile access to a range of multisubstituted bispirocyclooxindole derivatives, and should be useful in medicinal chemistry and diversity-oriented syntheses of this intriguing class of compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A palladium-catalysed enolate alkylation cascade for the formation of adjacent quaternary and tertiary stereocentres

The catalytic enantioselective synthesis of densely functionalised organic molecules containing all-carbon quaternary stereocentres is a challenge to modern chemical methodology research. The catalytically controlled asymmetric alpha-alkylation of ketones represents another difficult task and has been of major interest to our and other research groups in the past. We now report a palladium-cata...

متن کامل

Enantioselective organocatalytic Michael additions to acrylic acid derivatives: generation of all-carbon quaternary stereocentres.

Acrylic esters, thioesters and N-acryloyl pyrrole have been identified as effective electrophiles in the enantioselective Michael addition reaction with beta-keto ester pro-nucleophiles catalysed by a cinchona alkaloid derived bifunctional organocatalyst; enantiomeric excesses of up to 98% and yields of up to 96% can be obtained for a range of Michael acceptors and pro-nucleophiles.

متن کامل

Enantioselective construction of quaternary carbon centre catalysed by bifunctional organocatalyst.

The bifunctional thiourea-tertiary amine derivatives of simple chiral diamines serve as highly enantioselective catalysts for the Michael addition of alpha-substituted cyanoacetates to vinyl sulfones, giving an efficient protocol for the construction of an all-carbon substituted quaternary stereocentre.

متن کامل

Highly enantioselective synthesis of tertiary boronic esters and their stereospecific conversion to other functional groups and quaternary stereocentres.

Organoboron compounds are useful in asymmetric synthesis. We have developed an efficient methodology for the highly enantioselective synthesis of tertiary boronic esters from the corresponding secondary benzylic alcohols. Further stereospecific transformations of the boronic ester moiety are described including the preparation of tertiary alcohols, C-tertiary amines and tertiary arylalkanes. Se...

متن کامل

Enantioselective Stereodivergent Nucleophile‐Dependent Isothiourea‐Catalysed Domino Reactions

α,β-Unsaturated acyl ammoniums generated from the reaction of α,β-unsaturated 2,4,6-trichlorophenol (TCP) esters bearing a pendent enone with an isothiourea organocatalyst are versatile intermediates in a range of enantioselective nucleophile-dependent domino processes to form complex products of diverse topology with excellent stereoselectivity. Use of either 1,3-dicarbonyls, acyl benzothiazol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 2011